可單獨檢測低氧,ROS氧化應激,亦可同時檢測!

您是否在面對復雜多變的細胞模型時,對于如何準確測量細胞內的缺氧和氧化應激水平感到困擾?

是否為了進行這一組檢測而需要購買兩套試劑盒而感到擔憂高昂的成本?

您是否對傳統的檢測方法感到繁瑣,并且對結果的可靠性存有疑慮?

 

在生命科學的前沿探索中,準確評估細胞的缺氧與氧化應激狀態,對于揭示疾病機理、優化治療策略至關重要。如今,Enzo Life Sciences傾情推出ROS-ID? Hypoxia/Oxidative Stress Detection Kit(ENZ-51042-0125,ENZ-51042-K500),這是一款專為科研人員設計,二合一的創新工具,艾美捷為您推薦的ROS-ID??試劑盒直擊這一系列挑戰,以其獨特的雙色熒光標記技術,為您帶來前所未有的清晰視野。它不僅能夠直觀區分缺氧與氧化應激狀態,還能確保實驗結果的準確性和重復性,讓您的研究數據更加信服有力。

 

名稱 貨號 規格 用途 檢測方式
ROS-ID? Hypoxia/Oxidative stress detection kit ENZ-51042-0125
ENZ-51042-K500
125T
500T
活細胞(懸浮細胞,貼壁細胞) 流式細胞術,熒光顯微鏡

* 可單獨檢測低氧,ROS氧化應激,亦可同時檢測!

 

高度敏感且特異的熒光探針,可測量活細胞中的缺氧和氧化應激 適用于附著或懸浮細胞系 包括ROS和缺氧誘導劑在內的完整試劑盒 Enzo Life Sciences的ROS-ID?缺氧/氧化應激檢測套裝旨在功能性檢測活細胞(懸浮和附著細胞均適用)中的缺氧和氧化應激水平,可使用熒光顯微鏡或流式細胞術。該套裝包括缺氧(紅色)和氧化應激水平(綠色)的熒光探針作為兩個主要組成部分。

 

實驗原理概述:

1、缺氧檢測(紅色):缺氧檢測試劑(Red Hypoxia Detection Reagent)是一種非熒光或弱熒光的芳香族化合物,含有硝基(NO2)基團。在缺氧細胞中,由于存在硝基還原酶活性,硝基團通過一系列化學反應被轉化為羥胺(NHOH)和氨基(NH2)基團,導致原始分子降解并釋放出熒光探針,從而在熒光顯微鏡下呈現紅色熒光。

2、氧化應激檢測(綠色):氧化應激檢測試劑(Oxidative Stress Detection Reagent)為非熒光、細胞可滲透的總ROS檢測染料,能直接與多種活性氧物種反應,如過氧化氫、過氧亞硝酸鹽和羥基自由基,生成綠色熒光產物,指示不同類型的ROS/RNS產生。此探針對超氧化物、活性氯或溴物種相對不敏感。

 

產品亮點

1、精準檢測,雙管齊下:該套件同時提供綠色熒光的氧化應激檢測試劑與紅色熒光的缺氧檢測試劑,分別對應細胞內ROS水平與缺氧環境,實現精準定位與定量。

2、廣泛適用,兼容性強:無論是貼壁細胞還是懸浮細胞,無論是采用熒光顯微鏡還是流式細胞儀,ROS-ID?套件都能靈活適應,滿足您多樣化的實驗需求。兩種規格(ENZ-51042-K500與ENZ-51042-0125)量身定制,靈活選擇,經濟高效。

3、操作簡便,效率提升:我們對ROS-ID? Hypoxia/Oxidative Stress Detection Mix的準備過程進行了優化,確保實驗準備簡單快捷,減少實驗誤差,提升整體研究效率。

4、結果可視化,直觀可信:實驗設計包含正負對照,確保每次實驗都有基準參考,使您的研究結論更具說服力。熒光信號直觀顯示,細胞狀態一目了然,便于數據分析與解讀。

 

結果分享:

氧化應激(A)和低氧(B)檢測染料的吸收峰和發射峰

圖 1. 氧化應激(A)和低氧(B)檢測染料的吸收峰和發射峰分別為504 nm/524 nm和580 nm/595 nm。這些染料可以使用488 nm的氬離子激光器激發,并在大多數實驗流式細胞儀的FL3通道(低氧紅染料)和FL1通道(氧化應激染料)上檢測。

 

HeLa 細胞用 DFO(低氧的化學誘導劑)或吡咯烷酮(氧化應激誘導劑)處理

圖 2. HeLa 細胞被種在顯微鏡載玻片上,第二天按照手冊描述,用 DFO(低氧的化學誘導劑)或吡咯烷酮(氧化應激誘導劑)處理 4 小時,溫度為 37°C。處理后,載玻片用 PBS 洗滌,蓋上蓋玻片,并使用 Olympus BX-51 熒光顯微鏡進行可視化觀察。

培養的人類HeLa和HL-60細胞中缺氧和氧化應激水平的檢測

圖3. 培養的人類HeLa和HL-60細胞中缺氧和氧化應激水平的檢測。細胞用缺氧誘導劑(DFO)和ROS誘導劑(花青素)處理。每個象限中的數字表示細胞(總體)的百分比。結果表明,缺氧和氧化應激染料具有特異性。

 

產品詳情:

應用:流式細胞術,熒光顯微鏡,熒光檢測,高通量篩選

應用說明:此試劑盒設計用于使用貼壁或懸浮細胞進行熒光顯微鏡和/或流式細胞術。

質量控制:使用流式細胞術方法進行測試,評估低氧細胞和/或具有高水平總氧化應激的細胞,并結合染料(試劑盒中提供)。還獲得顯微鏡圖像。

數量:對于-K500規格: 500次熒光顯微鏡分析或100次流式細胞分析。

對于-0125規格: 125次熒光顯微鏡分析或25次流式細胞分析。

使用/穩定性:在適當的儲存條件下,試劑盒成分穩定,直到產品標簽上注明的日期。

處理:避免凍融循環。

運輸:干冰

短期儲存:-20°C

長期儲存:-20°C

 

【附錄】發表文章:

Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells: A. Antonelli, et al.; Int. J. Mol. Sci. 24, 5157 (2023), Abstract;

Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia: L. He, et al.; Acta Biomater. 162, 57 (2023), Abstract;

Precise manipulation of circadian clock using MnO2 nanocapsules to amplify photodynamic therapy for osteosarcoma: Y.X. Ge, et al.; Mater. Today Bio 19, 100547 (2023), Abstract;

The impact of hypoxia and oxidative stress on proteo-metabolomic alterations of 3D cholangiocarcinoma models: P. Phukhum, et al.; Sci. Rep. 13, 3072 (2023), Abstract;

Dimethyloxalylglycine (DMOG), a Hypoxia Mimetic Agent, Does Not Replicate a Rat Pheochromocytoma (PC12) Cell Biological Response to Reduced Oxygen Culture: R. Chen, et al.; Biomolecules 12, 541 (2022), Abstract;

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs: C. Han, et al.; Biomaterials 287, 121619 (2022), Abstract;

Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma: Q. Xu, et al.; Biomaterials 280, 121287 (2022), Abstract;

Intracellular glucose starvation affects gingival homeostasis and autophagy: R. Li, et al.; Sci. Rep. 12, 1230 (2022), Abstract;

Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis: Y. Chen, et al.; ACS Nano 16, 2429 (2022), Abstract;

Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy: Y. Dong, et al.; Drug Deliv. 29, 238 (2022), Abstract;

Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma: R. Wang, et al.; Bioact. Mater. 13, 286 (2022), Abstract;

Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework: W.L. Pan ,et al.; Biomaterials 283, 121559 (2022), Abstract;

Mitochondrial glutathione depletion nanoshuttles for oxygen-irrelevant free radicals generation: A cascaded hierarchical targeting and theranostic strategy against hypoxic tumor: B. Liang, et al.; ACS Appl. Mater. Interfaces 14, 13038 (2022), Abstract;

Multifunctional Nanosnowflakes for T1-T2 Double-Contrast Enhanced MRI and PAI Guided Oxygen Self-Supplementing Effective Anti-Tumor Therapy: Y. Lv, et al.; Int. J. Nanomedicine 17, 4619 (2022), Abstract;

Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries: K. Haase, et al.; Biomaterials 280, 121248 (2022), Abstract;

Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy: W. Jiang, et al.; J. Nanobiotechnology 20, 129 (2022), Abstract;

Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel: S.Y. Wei, et al.; J. Tissue. Eng. 13, 20417314221084096 (2022), Abstract; Full Text

A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances: P. Liu, et al.; J. Nanobiotechnology 19, 149 (2021), Abstract; Full Text

An albumin-based therapeutic nanosystem for photosensitizer/protein co-delivery to realize synergistic cancer therapy: S.L. Ai, et al.; ACS Appl. Bio. Mater. 4, 4946 (2021), Abstract;

An injectable hydrogel co-loading with cyanobacteria and upconversion nanoparticles for enhanced photodynamic tumor therapy: X. Zhang, et al.; Colloids Surf. B. Biointerfaces 201, 111640 (2021), Abstract;

Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy: F. Shao, et al.; Biomaterials 274, 120869 (2021), Abstract;

Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC: H. Chen, et al.; J. Nanobiotechnology 19, 342 (2021), Abstract; Full Text

Combination of coumarin and doxorubicin induces drug-resistant acute myeloid leukemia cell death: N.S. Al-Abbas, et al.; Heliyon 7, e06255 (2021), Abstract; Full Text

Encapsulating an acid-activatable phthalocyanine–doxorubicin conjugate and the hypoxia-sensitive tirapazamine in polymeric micelles for multimodal cancer therapy: X. Guo, et al.; Biomater. Sci. 9, 4936 (2021), Abstract;

Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine: J. Chen, et al.; Sci. Adv. 7, 5267 (2021), Abstract;

Extracellular matrix-induced GM-CSF and hypoxia Promote Immune Control of Mycobacterium tuberculosis in Human In Vitro Granulomas: A. Arbues, et al.; Front. Immunol. 12, 727508 (2021), Abstract; Full Text

Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles: M. Zhao, et al.; ACS Appl. Mater. Interfaces 13, 32763 (2021), Abstract;

Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation: C. Ji, et al.; Theranostics 11, 8587 (2021), Abstract; Full Text

MnO2-based nanomotors with active fenton-like Mn2+ delivery for enhanced chemodynamic therapy: J. Ou, et al.; ACS Appl. Mater. Interfaces 13, 38050 (2021), Abstract;

Mucin 1 regulates the hypoxia response in head and neck cancer cells: K. Utispan, et al.; J. Pharmacol. Sci. 147, 331 (2021), Abstract;

Ruthenium (II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia: F. Wei, et al.; Biomaterials 276, 121064 (2021), Abstract;

Stratified 3D microtumors as organotypic testing platforms for screening pancreatic cancer therapies: M.V. Monteiro, et al.; Small Methods 5, e2001207 (2021), Abstract;

Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement: G. Zhang, et al.; J. Nanobiotechnology 19, 9 (2021), Abstract; Full Text

The New Serum-Free OptiPASS ? Medium in Cold and Oxygen-Free Conditions: An Innovative Conservation Method for the Preservation of MDA-MB-231 Triple Negative Breast Cancer Spheroids: A. Goisnard, et al.; Cancers 13, 1945 (2021), Abstract; Full Text

Biomimetic decoy inhibits tumor growth and lung metastasis by reversing the drawbacks of sonodynamic therapy: H. Zhao, et al.; Adv. Healthc. Mater. 9, e1901335 (2020), Application(s): Fluorescence microscopy using 4T1 cells, Abstract;

Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy: S.B. Wang, et al.; Biomaterials 234, 119772 (2020), Application(s): Fluorescence microscopy using CT26 cells, Abstract;

A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor: R.Q. Li, et al.; Biomaterials 194, 84 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract;

Combinational phototherapy and hypoxia-activated chemotherapy favoring antitumor immune responses: B. Ma, et al.; Int. J. Nanomedicine 14, 4541 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract; Full Text

Di-(2-ethylhexyl) phthalate (DEHP) inhibits steroidogenesis and induces mitochondria-ROS mediated apoptosis in rat ovarian granulosa cells: A. Tripathi, et al.; Toxicol. Res. (Camb.) 8, 381 (2019), Application(s): Flow cytometry using granulosa cells, Abstract;

Encircling granulosa cells protects against di-(2-ethylhexyl)phthalate-induced apoptosis in rat oocytes cultured in vitro: A. Tripathi, et al.; Zygote 27, 203 (2019), Abstract;

Endogenous oxygen generating multifunctional theranostic nanoplatform for enhanced photodynamic-photothermal therapy and multimodal imaging: K. Wu, et al.; Theranostics 9, 7697 (2019), Application(s): Confocal microscopy using HeLa cells, Abstract; Full Text

Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement: W. Li, et al.; Colloids Surf. B Biointerfaces 183, 110453 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract;

Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia: L. Chudal, et al.; Mater. Sci. Eng. C Mater. Biol. Appl. 104, 109979 (2019), Application(s): Fluorescence microscopy using MCF-7 cells, Abstract;

Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics: R. Wang, et al.; Biomaterials 221, 119413 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract;

Monodispersed copper (I)‐based nano metal–organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy: X. Cai, et al.; Adv. Sci. 6, 1900848 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract; Full Text

Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia: V. Manolova, et al.; J. Clin. Invest. 130, 491 (2019), Application(s): Flow cytometry analysis using mouse red blood cells, Abstract;

Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer: Y. Wang, et al.; Biomaterials 220, 119405 (2019), Application(s): Fluorescence microscopy using 4T1 cells, Abstract;

Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging: Z. Yang, et al.; Theranostics 9, 6809 (2019), Application(s): Fluorescence microscopy using MKN-45P cells, Abstract; Full Text

Solid matrix-supported supercritical CO2 enhances extraction of γ-linolenic acid from the cyanobacterium Arthrospira (Spirulina) platensis and bioactivity evaluation: X. Yang, et al.; Mar. Drugs 17, 203 (2019), Application(s): Fluorescence microscopy using Zebrafish larvae, Abstract; Full Text

All-in-one theranostic nanoplatform based on hollow MoSx for photothermally-maneuvered oxygen self-enriched photodynamic therapy: J. Wang, et al.; Theranostics 8, 955 (2018), Application(s): Fluorescence microscopy using 4T1 cells, Abstract; Full Text

Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy: Q. Wang, et al.; Biomater. Sci. 6, 3096 (2018), Abstract;

High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts: P. Buranasin, et al.; PLoS One 13, e0201855 (2018), Abstract; Full Text

Light-enhanced hypoxia-responsive nanoparticles for deep tumor penetration and combined chemo-photodynamic therapy: Z. Li, et al.; Chem. Commun. 54, 13127 (2018), Abstract;

LSD1 mediated changes in the local redox environment during the DNA damage response: M.L. Duquette, et al.; PLoS One 13, e0201907 (2018), Abstract; Full Text

Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy: H. Zuo, et al.; Acta Biomater. 80, 296 (2018), Abstract;

Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy: M.K. Zhang, et al.; Small 14, e1803602 (2018), Abstract;

Investigating the application of a nitroreductase-expressing transgenic zebrafish line for high-throughput toxicity testing: A.C. Chlebowski, et al.; Toxicol. Rep. 4, 202 (2017), Application(s): Use of hypoxia detection reagent with zebrafish embryos,

Modulation of alveolar macrophage innate response in proinflammatory-, pro-oxidant-, and infection- models by mint extract and chemical constituents: Role of MAPKs: N. Yadav & H. Chandra; Immunobiology 223, 49 (2017), Abstract;

Nitroimidazole derivatives of polypyridyl ruthenium complexes: Towards understanding their anticancer activity and mode of action: O. Mazuryk, et al.; Eur. J. Pharm. Sci. 101, 43 (2017), Application(s): Flow cytometry analysis using HaCaT and PANC-1 cells, Abstract;

Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy: D. Guo, et al.; Biomaterials 144, 188 (2017), Application(s):Condocal Microscopy, Abstract; Full Text

Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy: Y. Wang, et al.; ACS Nano 11, 2227 (2017), Application(s): Flow cytometry analysis of mouse breast carcinoma cells, Abstract; Full Text

Analysis of a nitroreductase-based hypoxia sensor in primary neuronal cultures: B.N. Lizama-Manibusan, et al.; ACS Chem. Neurosci. 7, 1188 (2016), Abstract;

ERK2 and CHOP restrict the expression of the growth-arrest specific p20K lipocalin gene to G0: M.J. Erb, et al.; Mol. Cell. Biol. 36, 2890 (2016), Application(s): Hypoxia levels in chick embryo fibroblasts (CEF), Abstract;

Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution: B. Luo, et al.; Nat. Commun. 7, 12177 (2016), Application(s): Flow cytometry analysis of hypoxia in exudate leukocytes and peritoneum, Abstract; Full Text

Selective advantage of trisomic human cells cultured in non-standard conditions: S.D. Rutledge, et al.; Sci. Rep. 6, 22828 (2016), Application(s): Fluorescence microscopy on human colorectal adenocarcinoma DLD1 cells, Abstract; Full Text

Low-level light in combination with metabolic modulators for effective therapy of injured brain: T. Dong, et al.; J. Cereb. Blood Flow Metab. 35, 1435 (2015), Application(s): Immunofluorescence Assay, Abstract; Full Text

Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors: J. Jiang, et al.; Nanoscale 6, 12104 (2014), Abstract;

艾美捷科技優勢代理品牌

發表評論

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: